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Abstract: We report on the cryogenic characterization of Red Green Blue - High Density
(RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide pro-
gram of dark matter searches with liquid argon time projection chambers. A cryogenic setup was
used to operate the SiPMs at varying temperatures and a custom data acquisition system and analysis
software were used to precisely characterize the primary dark noise, the correlated noise, and the
gain of the devices. We demonstrate that FBK RGB-HD SiPMs with low quenching resistance
(RGB-HD-LRq) can be operated from 40 K to 300 K with gains in the range 105 to 106 and noise
rates at a level of around 1 Hz/mm2.

Keywords: Cryogenic detectors; Photon detectors for UV, visible and IR photons (solid-state);
Photon detectors forUV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs,
CCDs, EBCCDs, EMCCDs etc)
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1 Introduction

Silicon photomultipliers (SiPMs) are of special interest for the development of argon- and xenon-
based cryogenic dark matter detectors, whose performance strongly depends on efficient detection
of single scintillation photons. Operating SiPMs at cryogenic temperature (87 K for argon and
165 K for xenon) introduces both challenges and advantages over room temperature operation.

Building on its strong history of SiPM development [1–3], FBK1 has developed a new genera-
tion of devices, the Red Green Blue - High Density (RGB-HD) SiPM [4]. We evaluated RGB-HD
SiPMs for possible use as photosensors in the DarkSide program of liquid argon time projection
chamber dark matter searches [5, 6]. Among the features required for use in the DarkSide program
of experiments are a low dark rate (< 100 mHz/mm2) and a total correlated noise probability
lower than 60%. Both are necessary to maintain the detector energy resolution and pulse shape
discrimination performance.

Cryogenic studies of SiPMs are already present in literature [7, 8]. This paper details the first
study of the performance of FBK RGB-HD SiPMs in the temperature range from 40 K to 300 K.
Section 2 introduces the two variants of RGB-HD SiPMs that we tested; section 3 gives a brief
overview of the cryogenic setup, the readout chain, and the analysis software (for a more detailed
description, we refer the reader to ref. [9]); finally, in section 4, we detail the results obtained with
these devices.

2 RGB-HD SiPMs

An introduction to the performance of RGB-HD SiPMs can be found in [4]. Here we focus on
the cryogenic performance of RGB-HD SiPMs. We studied two variants of RGB-HD SiPMs, the
RGB-HD High quenching Resistor (RGB-HD-HRq) and the RGB-HD Low quenching Resistor
(RGB-HD-LRq). The RGB-HD-HRq SiPMs reported here were fabricated with a SPAD size of
25 × 25 µm2 and the RGB-HD-LRq SiPMs had a SPAD size of 20 × 20 µm2. The capacitance per
unit area is 50 pF/mm2 in both cases. All the SiPMs tested were 5 × 5 mm2.

1Fondazione Bruno Kessler, Trento, Italy.

– 1 –



2
0
1
7
 
J
I
N
S
T
 
1
2
 
P
0
9
0
3
0

Figure 1. Detail of the cold finger, positioned just above the top opening of the stainless steel cylindrical
cryostat. Also visible is the PTFE tube covered with superinsulator. On the right hand side of the cold finger,
a black box contains the SiPM under test. Two unjacketed optical fibers, connected to an LED and to a laser
source placed outside the vacuum chamber, penetrate the top side of the black box and can be used to deliver
calibrated light signals to the SiPM under test. In the center of the cold finger is a cryogenic pre-amplifier
and on the left are the cold head of the cryocooler and the set of high power film resistors used to control the
temperature.

3 Setup and analysis

The cryogenic setup is contained in a stainless steel cryostat sealed with two DN 320 ISO-K
flanges and pumped to a vacuum level of about 10−2 mbar with a Pfeiffer ACP15 multi-stage roots
evacuation pump. A Cryomech PT90 pulse tube cryocooler, with 90 W of cooling capacity at 77 K,
is mounted to the top flange of the cryostat. The cold head of the cryocooler is equipped with a cold
finger that holds the SiPM assembly under test, as shown in figure 1. The system is optimized for
fast thermal cycling: the cold finger can be cooled down to 40 K in about 40 min. The cold finger
is also equipped with a platinum RTD connected to a Lakeshore 335 temperature controller that
supplies a set of high power metal film resistors mounted on the cold finger with the thermal load
required for temperature regulation. The top flange also hosts feedthroughs for two optical fibers
that are connected to an external LED and a laser light source. They can be used for measurements
of the photon detection efficiency (PDE) of SiPMs, although this is not within the scope of this
work and will be subject of a future study.

The readout chain is composed of a Keithley 2450 SourceMeter that serves as the bias source
for the SiPM; a cryogenic pre-amplifier, based on a high speed, low-noise operational amplifier
configured as a trans-impedance amplifier (TIA) with a feedback resistor of 500Ω, resulting in a
gain of 0.5 mV/µA; a single stage, non-inverting warm amplifier, configured for a gain of 28.8 V/V;
and a CAEN V1751 1 GS/s 10 bit digitizer configured for interleaved acquisition and operating in
auto-trigger mode. The TIA was characterized over the full range of test temperatures to verify that
it made no temperature dependent contribution to the SiPM performance [10].

A custom data analysis software developed at FBK reads the data saved by the digitizer and
performs a detailed analysis of the SiPM response. For each event, the program calculates the

– 2 –
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peak amplitude and the time since the previous event and then generates a scatter plot of these
two parameters. An example of a scatter plot from an RGB-HD-HRq operated at 40 K and 4 V
over-voltage is shown in figure 2. From this figure it is possible to identify the noise sources that
compose the response of the device:

• DCR: the main group of events is primary dark count rate (DCR), with an amplitude centered
around 1 PE (Photo-Electron) and an exponential time distribution;

• DiCT: Direct CrossTalk (DiCT) events occur when, after a primary event, a photon triggers
a second avalanche in a neighboring cell. Since the travel time is of the order of picoseconds,
it is impossible to resolve the two events. As a result, DiCT events have a time distribution
similar to that of DCR but a greater amplitude (2 or more PE);

• DeCT: Delayed CrossTalk (DeCT) is characterized by delay times of the order of a few to tens
of nanoseconds. Such events occur when crosstalk photons are absorbed in the non-depleted
region of a neighboring cell. The carriers then have to diffuse into the high-field region before
triggering an avalanche. The resulting pulses have an amplitude of 1 PE but are delayed with
respect to the previous ones by the characteristic diffusion time;

• AP: AfterPulsing events have intermediate delay times and an amplitude of 1 PE or lower.
Such events occur when an electron produced in an avalanche is trapped by some impurity in
the silicon lattice and is then released after a characteristic time, producing a second avalanche
in the same cell. The time distribution is therefore correlated to the trap time constant and
the recharge time constant of the microcell. If the time distance is lower than the latter, the
AP event will have a reduced amplitude.

The breakdown voltage at each test temperature is calculated by analyzing the waveform
amplitude using the DLED algorithm [11], this is done automatically by the software. The peak
amplitude has a linear dependence on the applied over-voltage and allows a precise determination
of Vbd (see figure 3). This value is then used to correct the bias voltage so that the SiPMs are tested
at the same over-voltages at each temperature.

4 Results

As discussed in ref. [9], all FBK SiPMs are passively quenched using a polysilicon resistor. This
resistance increases as temperature decreases, which leads to an increase in the single cell recharge
time and hence the slow component of the SiPM pulse, τs. Operation at cryogenic temperature
therefore increases the length of the SiPM signal to several microseconds, leading to incomplete
integration of the released charge within a 500 ns gate. RGB-HD-LRq SiPMs were developed with
a low resistance that depends weakly on temperature to overcome this problem. This reduces the
temperature variation of the SPAD recharge time so that even at the 87 K argon boiling point, the
SiPM signal is fully contained within 500 ns. Figure 3 shows the SPAD recharge time for both the
RGB-HD-HRq and RGB-HD-LRq SiPMs. At low temperatures, the RGB-HD-LRq SiPMs have a
recharge time one order of magnitude faster. The effect of the pulse length variation on the charge
collected within the 500 ns gate is shown in figure 4. The performance of the RGB-HD-LRq SiPM

– 3 –
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Figure 2. Distribution of peak amplitude versus time since last event for an RGB-HD-HRqSiPM operating at
40 K and 4 V of over-voltage in the absence of light. It is possible to identify the different noise components
of the SiPM response described in the text: DCR, DiCT, DeCT and AP.
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shows almost no variation, in contrast to the RGB-HD-HRq device. The fast peak of the pulse is
almost unaffected by temperature. Its amplitude increases linearly with over-voltage and only very
slowly with temperature for both devices, as shown in figure 5.
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The DCR as a function of temperature and over-voltage is shown in figure 6. When operated at
low temperature, both variants show aDCR reduced by over five orders ofmagnitude relative to room
temperature. The DCR for the two variants is of the same order of magnitude over the studied tem-
perature range. TheArrhenius plot, shown in figure 7, allows one to distinguish between the different
mechanisms that give rise to the primary dark count rate. At high temperature (steep region), the
dominant mechanism is thermal generation, which has an exponential dependence on temperature,
while field-enhanced effects [12] dominate at low temperature, where the DCR reaches a plateau.

The two variants of RGB-HD technology have similar correlated noise levels. Direct cross
talk, shown in figure 8, has a weak dependence on the temperature and increases linearly with over-
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Figure 8. DiCT as a function of over-voltage and temperature for the RGB-HD-HRq (left) and RGB-HD-LRq

(right) SiPMs.
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Figure 9. Sum of AP and DeCT as a function of over-voltage and temperature for the RGB-HD-HRq (left)
and RGB-HD-LRq (right) SiPMs.

voltage. Overall, the direct cross talk probability is lower for RGB-HD-LRq devices. DeCT and AP
events partially overlap in time, especially at high temperatures, making it difficult to distinguish
between the two. It is therefore more convenient to measure their sum, as shown in figure 9. For
both SiPM variants, the sum of the DeCT and AP is less than 10 %.

5 Conclusions

We compared the performance of two variants of RGB-HD SiPMs produced by FBK in the tem-
perature range from 40 K to 300 K. The RGB-HD-LRq SiPMs were shown to have a fast signal at
low temperature that is fully contained within a 500 ns integration gate, gains in the range 105 to
106, noise rates around 1 Hz/mm2 in the temperature range from 40 K to 300 K and total correlated
noise probabilities below 50 %, satisfying the requirements for DarkSide-20k. These features make
the RGB-HD-LRq SiPMs attractive for use in the DarkSide family of experiments.
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